

A MapReduce and MPI Programming Model for Distributed Large
Scale 3D Mesh Processing

Da Qi Ren1, Zane Wei2 and Dennis D. Giannacopoulos3, Senior Member, IEEE

1The US R&D Center, Huawei Technologies, Santa Clara, CA 95050 USA, daqi.ren@huawei.com

2The US R&D Center, Huawei Technologies, Santa Clara, CA 95050 USA, weizhulin@huawei.com
3Department of ECE, McGill University, Montreal H3A0E9 Canada, dennis.giannacopoulos@mcgill.ca

Developing a high performance platform for large-scale, high-intensity data processing is a priority for researching cost-effective

parallel finite element methods (FEM). This paper introduces an efficient MapReduce-MPI based strategy for parallel 3D finite
element mesh processing, demonstrates the potential benefits of this approach for optimally utilizing system resources. Preliminary
experimental results show that the new platform improves speedup over a range of problem sizes and different machine numbers. In
detail, this paper includes the design of scalable Hadoop algorithms for 3D FEM mesh processing; experimental evaluation of these
algorithms on computer clusters; and discussions on the benefits and challenges of developing 3D FEM algorithms using the
MapReduce-MPI model.

Index Terms—Mesh; MapReduce; MPI; Finite Element Method.

I. INTRODUCTION
ARALLEL mesh processing can be beneficial for simulating
complex electromagnetic problems required for 3D finite

element solutions. However, the high volume of initial mesh
data sets can significantly degrade system performance and
diminish the benefits. Moreover, the costs of mesh processing
are highly dependent on the underlying parallel algorithm as
well as the system architecture. Studying a workable design
for high performance large-scale mesh data processing is
important for the performance of FEM simulations.
 MapReduce has been used in multiple big data application

domains to efficiently process huge data sets. Hadoop (when
MapReduce is implemented) incorporates Hadoop Distributed
File System (HDFS) has superb capabilities that can work
with intensive data via a distributed file system. This enables
MapReduce the possibility to be used for processing scientific
HPC over intensive data sets. On the other side, scientific and
engineering applications are usually both data- and
computation-intensive; and require multiple cycles and
chained tasks. Hadoop cannot fully address problems with
iterative structures by itself. These limitations are inefficient
for scientific computations directly wrapped in MapReduce

tasks because iterative computations cannot be rapidly
distributed over a HDFS cluster in the same way that it can
over a traditional HPC cluster. [1]
 MPI programs are designed to distribute data to different

nodes, compute asynchronously in parallel, and then collect
the results back. MPI has no data locality. MapReduce with
HDFS duplicates data so that computation in local storage can
occur in a way that streams off the disk straight to the

P

Fig.1 Hadoop MPI programming model: MPI manages hadoop tasks; the
tasks are distributed among the group of MPI communicators.

TABLE 1: ALGORITHM III
HADOOP MANAGER ON MASTER NODE

MapReduce MPI master node Description: enables the master node
to perform MPI task management; locates data nodes; assigns task
functions to find the key; and updates mesh information between
data nodes.
1: for each node n in nodelist do {
2: MPI _INIT; to initialize MPI functions
3: }
4: for each subdomain, do{
5: Read the local data file;
6: Compute Key for each iteration; as the key input
7: }
8: for Node i in MPI task pool on master node, do{
9: if status = ready, do {
10: update task tracker and start to send task}
10: }
11: for Node i update adjunct list , do{
12: update adjunct edge and point list ;
13: }

Blocks A B C D

Sub-
domain

ACDH,ABCH
ABEH,BCGH
BEGH,BEGF

EGHL,EFGL
EFIL,FGKL
F I K L , F I K J

IK L P , IFK P
IFMP,JKOP
JMOP,JMON

MOPT,MFOT
MFQT,NKST
NQST,NQSR

Fig.2 3D HTO FEM mesh refinement on a rectangular cavity: domain
decomposition; workload distribution; and the final refinement results.

processor. MPI delivers a network-bound performance,
MapReduce exploits local storage to avoid network
bottlenecks when working with big data – it reduces network
use and maximizes efficiency. For the above reasons, adding
MPI capabilities to the MapReduce framework becomes a
priority.
 Efforts to integrate MPI into MapReduce framework have

been made in various formats by researchers. Ye et al. [2]
launched MPI tasks on a Hadoop cluster via the Hadoop
streaming interface using a modified OpenMPI, then
compared the performance of Gradient Boosted Decision
Trees (GBDT) algorithms with MPI-based and MapReduce-
based implementation. In [3], T. Hoefler and al. discussed
common strategies for implementing MapReduce runtime, and
proposed an optimized implementation scenario of
MapReduce on top of MPI.

II. MAPREDUCE MPI PROGRAMMING MODEL
 The programming paradigm in Fig.1 enables MPI to control
Hadoop function calls and task distributions. MPI gives
precise control over the memory and format of the data
allocated by each processor during a MapReduce operation.
Fig.1 illustrates the data flow of a typical MapReduce
computation where the input files to a Hadoop program are
fetched from the Master Node. Compute nodes executing
instances of the map() function produce intermediate key-
value pairs that are stored on local disks. On the other side,

compute nodes executing instances of the reduce() function
use remote procedure calls (RPCs) to copy data to their local
disks, and store output back on the HDFS. An HDFS server,
map function, and reduce function may be executed on the
same or different nodes. [4] [5]

III. RESULTS
 Our approach is demonstrated by using MapReduce-MPI
method with Hierarchical Tetrahedral and Octahedral (HTO)
mesh performing on a rectangular resonant cavity, as shown in
Fig.2. The cavity was initially discretized into four smaller
rectangular blocks; each of these blocks was subdivided into
six tetrahedra. The resulting 24-tetrahedral mesh sub-domains
are distributed in the parallel system, and executed on 2 to 10
slave nodes. The algorithm specified in Tab.1 has been
implemented. It enables the master node to control edge and
vertex load, update the shared edge and vertex, prepare and
deliver key values, and manage MPI. Performance
measurements are performed on the real symmetric cluster
system. Each node has the following configuration:

 Results indicate that MapReduce-MPI provides a combined
storage, processing and analysis system that can respond to the
growth in data volume and application diversity. When 600M,
700M and 800M HTO tetrahedral elements are produced on 2
to 10 slave nodes, the average speedup of 1.5 to 2.4 is
achieved comparing with regular distributed computing with
MPI. The results are illustrated in Figs.3-4.

IV. CONCLUSION
 A MapReduce-MPI model has been designed and imple-
mented to enhance the performance of mesh processing for 3D
FEM electromagnetics. Specifically MPI capabilities are
added into MapReduce framework in order to manage the
distributed processing on shared or distributed memories and
storages. Detailed algorithms including domain decom-
position, data allocation pattern and distributed computing
methods have been introduced. The experimental results have
been measured on real systems, the performance advantage of
using the MapReduce-MPI model has been validated.

REFERENCES
[1] K. Shvachko, Hairong Kuang, S. Radia, R. Chansler, “The Hadoop

Distributed File System”, The 26th IEEE Symposium on Mass Storage
Systems and Technologies (MSST). Incline Village, NV, 2010.

[2] T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards Efficient
MapReduce Using MPI”, Proceedings of the 16th European PVM/MPI
Users' Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface. pp. 240 – 249, Springer-Verlag, Berlin,
Heidelberg. ISBN: 978-3-642-03769-6, 2009.

[3] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, “Stochastic gradient boosted
distributed decision trees”, CIKM'09. pp. 2061-2064, Hong Kong,
China, 2009.

[4] MapReduce-MPI library, http://mapreduce.sandia.gov/, accessed Sept
10, 2013.

[5] Java binding in OpenMPI, http://www.open-mpi.org/faq/?category=java
accessed Sept 10, 2013.

Fig.3 Comparison of HTO mesh refinement execution time between using
the MapReduce MPI (MPI-MP) and regular MPI, on the same system
platform. The numbers of mesh element executed are 600M, 700M, and
800M.

 Fig.4 Comparison of performance speedup between using the MapReduce
MPI (MPI-MP) and regular MPI, on the same system platform. The
numbers of mesh element executed are 600M, 700M, and 800M.

CPU Dual Xeon E5-2440 Memory Size 64GB RAM
DISK SATA 1TB x 8 Inter-node Speed 10 GE
OS SLES 11 SP1 (3.0.13-0.27)
MPI MPICH2 Hadoop Version Hadoop-0.20.2

